Advanced Ultrasonic Methods for Material and Structure Inspection
Inbunden, Engelska, 2007
Av Tribikram Kundu, Arizona) Kundu, Tribikram (University of Arizona, Tucson, Dominique Placko
3 749 kr
Beställningsvara. Skickas inom 11-20 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Ultrasonic signals are increasingly being used for predicting material behavior, both in an engineering context (detecting anomalies in a variety of structures) and a biological context (examining human bones, body parts and unborn fetuses). Featuring contributions from authors who are specialists in their subject area, this book presents new developments in ultrasonic research in both these areas, including ultrasonic NDE and other areas which go beyond traditional imaging techniques of internal defects. As such, both those in the biological and physical science communities will find this an informative and stimulating read.
Produktinformation
- Utgivningsdatum2007-01-09
- Mått164 x 241 x 28 mm
- Vikt721 g
- FormatInbunden
- SpråkEngelska
- Antal sidor393
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781905209699
Tillhör följande kategorier
Tribikram Kundu is a Professor at the Department of Civil Engineering and Engineering Mechanics, University of Arizona, USA.
- Preface xiiiChapter 1. An Introduction to Failure Mechanisms and UltrasonicInspection 1Kumar V. JATA, Tribikram KUNDU and Triplicane A. PARTHASARATHY1.1. Introduction 11.2. Issues in connecting failure mechanism, NDE and SHM 21.3. Physics of failure of metals 41.3.1. High level classification 41.3.1.1. Deformation 51.3.1.2. Fracture 51.3.1.3. Dynamic fatigue 61.3.1.4. Material loss 71.3.2. Second level classification 71.3.2.1. Deformation due to yield 71.3.2.2. Creep deformation and rupture 91.3.2.3. Static fracture 121.3.2.4. Fatigue 131.3.2.5. Corrosion 181.3.2.6. Oxidation 201.4. Physics of failure of ceramic matrix composites 211.4.1. Fracture 231.4.1.1. Mechanical loads and fatigue 231.4.1.2. Thermal gradients 241.4.1.3. Microstructural degradation 251.4.2. Material loss 251.5. Physics of failure and NDE 261.6. Elastic waves for NDE and SHM 261.6.1. Ultrasonic waves used for SHM 261.6.1.1. Bulk waves: longitudinal and shear waves 271.6.1.2. Guided waves: Rayleigh and Lamb waves, bar, plate and cylindrical guided waves 281.6.2. Active and passive ultrasonic inspection techniques 301.6.3. Transmitter-receiver arrangements for ultrasonic inspection 301.6.4. Different types of ultrasonic scanning 311.6.5. Guided wave inspection technique 321.6.5.1. One transmitter and one receiver arrangement 321.6.5.2. One transmitter and multiple receivers arrangement 351.6.5.3. Multiple transmitters and multiple receivers arrangement 361.6.6. Advanced techniques in ultrasonic NDE/SHM 361.6.6.1. Lazer ultrasonics 361.6.6.2. Measuring material non-linearity 371.7. Conclusion 381.8. Bibliography 38Chapter 2. Health Monitoring of Composite Structures Using Ultrasonic Guided Waves 43Sauvik BANERJEE, Fabrizio RICCI, Frank SHIH and Ajit MAL2.1. Introduction 432.2. Guided (Lamb) wave propagation in plates 462.2.1. Lamb waves in thin plates 512.2.2. Lamb waves in thick plates 552.3. Passive ultrasonic monitoring and characterization of low velocity impact damage in composite plates 602.3.1. Experimental set-up 602.3.2. Impact-acoustic emission test on a cross-ply composite plate 642.3.3. Impact test on a stringer stiffened composite panel 712.4. Autonomous active damage monitoring in composite plates 752.4.1. The damage index 762.4.2. Applications of the damage index approach 772.5. Conclusion 852.6. Bibliography 86Chapter 3. Ultrasonic Measurement of Micro-acoustic Properties of the Biological Soft Materials 89Yoshifumi SAIJO3.1. Introduction 893.2. Materials and methods 913.2.1. Acoustic microscopy between 100 and 200 MHz 913.2.2. Sound speed acoustic microscopy 953.2.3. Acoustic microscopy at 1.1 GHz 983.3. Results 993.3.1. Gastric cancer 993.3.2. Renal cell carcinoma 1033.3.3. Myocardial infarction 1043.3.4. Heart transplantation 1063.3.5. Atherosclerosis 1073.4. Conclusion 1123.5. Bibliography 112Chapter 4. Corrosion and Erosion Monitoring of Pipes by an Ultrasonic Guided Wave Method 115Geir INSTANES, Mads TOPPE, Balachander LAKSHMINARAYAN, and Peter B. NAGY4.1. Introduction 1154.2. Ultrasonic guided wave monitoring of average wall thickness in pipes 1184.2.1. Guided wave inspection with dispersive Lamb-type guided modes 1194.2.2. Averaging in CGV inspection 1234.2.3. The influence of gating, true phase angle 1294.2.4. Temperature influence on CGV guided wave inspection 1324.2.5. Inversion of the average wall thickness in CGV guided wave inspection 1344.2.6. Additional miscellaneous effects in CGV guided wave inspection 1364.2.6.1. Fluid loading effects on CGV inspection 1364.2.6.2. Surface roughness effects on CGV inspection 1394.2.6.3. Pipe curvature effects on CGV inspection 1414.3. Experimental validation 1454.3.1. Laboratory tests 1454.3.2. Field tests 1514.4. Conclusion 1534.5. Bibliography 155Chapter 5. Modeling of the Ultrasonic Field of Two Transducers Immersed in a Homogenous Fluid Using the Distributed Point Source Method 159Rais AHMAD, Tribikram KUNDU and Dominique PLACKO5.1. Introduction 1595.2. Theory 1605.2.1. Planar transducer modeling by the distribution of point source method 1605.2.2. Computation of ultrasonic field in a homogenous fluid using DPSM 1615.2.3. Matrix formulation 1635.2.4. Modeling of ultrasonic field in a homogenous fluid in the presence of a solid scatterer 1655.2.5. Interaction between two transducers in a homogenous fluid 1695.3. Numerical results and discussion 1715.3.1. Interaction between two parallel transducers 1725.3.2. Interaction between an inclined and a flat transducer 1845.3.3. Interaction between two inclined transducers 1855.4. Conclusion 1865.5. Acknowledgments 1865.6. Bibliography 187Chapter 6. Ultrasonic Scattering in Textured Polycrystalline Materials 189Liyong YANG, Goutam GHOSHAL and Joseph A. TURNER6.1. Introduction 1896.2. Preliminary elastodynamics 1916.2.1. Ensemble average response 1916.2.2. Spatial correlation function 1956.3. Cubic crystallites with orthorhombic texture 1976.3.1. Orientation distribution function 1976.3.2. Effective elastic stiffness for rolling texture 1996.3.3. Christoffel equation 2016.3.4. Wave velocity and polarization 2026.3.5. Phase velocity during annealing 2076.3.6. Attenuation 2106.4. Attenuation in hexagonal polycrystals with texture 2156.4.1. Effective elastic stiffness for fiber texture 2166.4.2. Attenuation 2206.4.3. Numerical simulation 2236.5. Diffuse backscatter in hexagonal polycrystals 2296.6. Conclusion 2326.7. Acknowledgments 2336.8. Bibliography 233Chapter 7. Embedded Ultrasonic NDE with Piezoelectric Wafer Active Sensors 237Victor GIURGIUTIU7.1. Introduction to piezoelectric wafer active sensors 2377.2. Guided-wave ultrasonic NDE and damage identification 2407.3. PWAS ultrasonic transducers 2427.4. Shear layer interaction between PWAS and structure 2447.5. Tuned excitation of Lamb modes with PWAS transducers 2467.6. PWAS phased arrays 2497.7. Electromechanical impedance method for damage identification 2557.8. Damage identification in aging aircraft panels 2587.8.1. Classification of crack damage in the PWAS near-field 2597.8.2. Classification of crack damage in the PWAS medium-field 2607.8.2.1. Impact detection with piezoelectric wafer active sensors 2637.8.2.2. Acoustic emission detection with piezoelectric wafer active sensors 2667.9. PWAS Rayleigh waves NDE in rail tracks 2687.10. Conclusion 2687.11. Acknowledgments 2697.12. Bibliography 269Chapter 8. Mechanics Aspects of Non-linear Acoustic Signal Modulation due to Crack Damage 273Hwai-Chung WU and Kraig WARNEMUENDE8.1. Introduction 2738.1.1. Passive modulation spectrum 2748.1.2. Active wave modulation 2758.2. Damage in concrete 2758.3. Stress wave modulation 2808.3.1. Material non-linearity in concrete 2818.3.2. Generation of non-linearity at crack interfaces 2828.3.3. Unbonded planar crack interface in semi-infinite elastic media 2898.3.4. Unbonded planar crack interface with multiple wave interaction 2958.3.5. Plane crack with traction 3018.3.6. Rough crack interface 3078.4. Summary and conclusion 3148.5. Bibliography 315Chapter 9. Non-contact Mechanical Characterization and Testing of Drug Tablets 319Cetin CETINKAYA, Ilgaz AKSELI, Girindra N. MANI, Christopher F. LIBORDI and Ivin VARGHESE9.1. Introduction 3199.2. Drug tablet testing for mechanical properties and defects 3219.2.1. Drug tablet as a composite structure: structure of a typical drug tablet 3219.2.2. Basic manufacturing techniques: cores and coating layers 3229.2.3. Tablet coating 3239.2.4. Types and classifications of defects in tablets 3259.2.5. Standard tablet testing methods 3279.2.6. Review of other works 3309.3. Non-contact excitation and detection of vibrational modes of drug tablets 3329.3.1. Air-coupled excitation via transducers 3349.3.2. LIP excitation via a pulsed lazer 3369.3.3. Vibration plate excitation using direct pulsed lazer irradiation 3389.3.4. Contact ultrasonic measurements 3409.4. Mechanical quality monitoring and characterization 3419.4.1. Basics of tablet integrity monitoring 3419.4.2. Mechanical characterization of drug tablet materials 3569.4.3. Numerical schemes for mechanical property determination 3619.5. Conclusions, comments and discussions 3659.6. Acknowledgments 3679.7. Bibliography 367Chapter 10. Split Hopkinson Bars for Dynamic Structural Testing 371Chul Jin SYN and Weinong W. CHEN10.1. Introduction 37110.2. Split Hopkinson bars 37210.3. Using bar waves to determine fracture toughness 37410.4. Determination of dynamic biaxial flexural strength 38010.5. Dynamic response of micromachined structures 38110.6. Conclusion 38310.7. Bibliography 384List of Authors 387Index 391
Tribikram Kundu is a Professor at the Department of Civil Engineering and Engineering Mechanics, University of Arizona, USA.
Hoppa över listan
Du kanske också är intresserad av
Production Scheduling
Pierre Lopez, François Roubellat, Pierre (Laboratory for Analysis and Architecture of Systems at the French National Center for Scientific Research (LAAS-CNRS)) Lopez, Francois (Laboratory for Analysis and Architecture of Systems at the French National Center for Scientific Research (LAAS-CNRS)) Roubellat
3 749 kr