5G System Design
Architectural and Functional Considerations and Long Term Research
Inbunden, Engelska, 2018
Av Patrick Marsch, Ömer Bulakci, Olav Queseth, Mauro Boldi, Poland) Marsch, Patrick (NSN and Nokia, Germany) Bulakci, Omer (Huawei German Research Center (GRC), Munich, Sweden) Queseth, Olav (Ericsson Research, Italy) Boldi, Mauro (Wireless Innovation, Telecom Italia
2 069 kr
Produktinformation
- Utgivningsdatum2018-05-04
- Mått196 x 239 x 36 mm
- Vikt1 247 g
- FormatInbunden
- SpråkEngelska
- Antal sidor608
- FörlagJohn Wiley & Sons Inc
- ISBN9781119425120
Tillhör följande kategorier
DR. PATRICK MARSCH has been heading research and R&D departments in NSN and Nokia, Poland, from 2011 to 2017, and is now Senior Project Manager, Digital Rail at Deutsche Bahn AG, Germany. Patrick has also been the technical manager of the 5G PPP METIS-II project, from which parts of this book have originated.DR. ÖMER BULAKÇI is Senior Research Engineer, Huawei German Research Center (GRC), Munich, Germany. He has been vice-chairman of the 5G PPP Architecture Working Group, and work package leader in 5G PPP METIS-II and 5G-MoNArch projects.DR. OLAV QUESETH, is Master Researcher, Ericsson Research, Sweden. He has been chairman of the 5G PPP Pre-standards Working Group and the coordinator of the 5G PPP METIS-II project.MAURO BOLDI works at Wireless Innovation, Telecom Italia, Italy. He has been the leader of dissemination and standardization in many European projects, such as 5G PPP METIS-II and 5G-MoNArch.
- Contributor List xviiForeword 1 xxiiiForeword 2 xxvAcknowledgments xxviiList of Abbreviations xxixPart 1 Introduction and Basics 11 Introduction and Motivation 3Patrick Marsch, Ömer Bulakçı, Olav Queseth and Mauro Boldi1.1 5 th Generation Mobile and Wireless Communications 31.2 Timing of this Book and Global 5G Developments 51.3 Scope of the 5G System Described in this Book 81.4 Approach and Structure of this Book 10References 122 Use Cases, Scenarios, and their Impact on the Mobile Network Ecosystem 15Salah Eddine Elayoubi, Michał Maternia, Jose F. Monserrat, Frederic Pujol, Panagiotis Spapis, Valerio Frascolla and Davide Sorbara2.1 Introduction 152.2 Main Service Types Considered for 5G 162.3 5G Service Requirements 172.4 Use Cases Considered in NGMN and 5G PPP Projects 182.4.1 NGMN use Case Groups 202.4.2 Use Case Groups from 5G PPP Phase 1 Projects 232.4.3 Mapping of the 5G‐PPP Use Case Families to the Vertical Use Cases 232.5 Typical Use Cases Considered in this Book 252.5.1 Dense Urban Information Society 252.5.2 Smart City 262.5.3 Connected Cars 262.5.4 Industry Automation 272.5.5 Broadcast/Multicast Communications 272.6 Envisioned Mobile Network Ecosystem Evolution 282.6.1 Current Mobile Network Ecosystem 282.6.2 Identification of New Players and their Roles in 5G 282.6.3 Evolution of the MNO‐Centric Value Net 312.7 Summary and Outlook 33References 343 Spectrum Usage and Management 35Thomas Rosowski, Rauno Ruismaki, Luis M. Campoy, Giovanna D’Aria, Du Ho Kang and Adrian Kliks3.1 Introduction 353.2 Spectrum Authorization and Usage Scenarios 363.2.1 Spectrum Authorization and Usage Options for 5G 363.2.2 Requirements for Different 5G Usage Scenarios 383.3 Spectrum Bandwidth Demand Determination 393.3.1 Main Parameters for Spectrum Bandwidth Demand Estimations 393.3.2 State of the Art of Spectrum Demand Analysis 403.3.3 Spectrum Demand Analysis on Localized Scenarios 403.4 Frequency Bands for 5G 413.4.1 Bands Identified for IMT and Under Study in ITU‐R 413.4.2 Further Potential Frequency Bands 433.4.3 5G Roadmaps 443.5 Spectrum Usage Aspects at High Frequencies 443.5.1 Propagation Challenges 453.5.2 Beamforming and 5G Mobile Coverage 453.5.3 Analysis of Deployment Scenarios 463.5.4 Coexistence of 5G Systems and Fixed Service Links 473.5.5 Coexistence under License‐exempt Operation 483.6 Spectrum Management 493.6.1 Evolutions in Dynamic Spectrum Management 493.6.2 Functional Spectrum Management Architecture 513.7 Summary and Outlook 53References 544 Channel Modeling 57Shangbin Wu, Sinh L. H. Nguyen and Raffaele D’Errico4.1 Introduction 574.2 Core Features of New Channel Models 594.2.1 Path Loss 594.2.2 LOS Probability 614.2.3 O2I Penetration Loss 634.2.4 Fast Fading Generation 654.3 Additional Features of New Channel Models 654.3.1 Large Bandwidths and Large Antenna Arrays 654.3.2 Spatial Consistency 674.3.3 Blockage 684.3.4 Correlation Modeling for Multi‐Frequency Simulations 694.3.5 Ground Reflection 704.3.6 Diffuse Scattering 724.3.7 D2D, Mobility, and V2V Channels 724.3.8 Oxygen Absorption, Time‐varying Doppler Shift, Multi‐Frequency Simulations, and UE Rotation 734.3.9 Map‐based Hybrid Modeling Approach 744.4 Summary and Outlook 74References 75Part 2 5G System Architecture and E2E Enablers 795 E2E Architecture 81Marco Gramaglia, Alexandros Kaloxylos, Panagiotis Spapis, Xavier Costa, Luis Miguel Contreras, Riccardo Trivisonno, Gerd Zimmermann, Antonio de la Oliva, Peter Rost and Patrick Marsch5.1 Introduction 815.2 Enablers and Design Principles 825.2.1 Modularization 825.2.2 Network Slicing 825.2.3 Network Softwarization 845.2.4 Multi‐Tenancy 855.2.5 Mobile or Multi‐Access Edge Computing 875.3 E2E Architecture Overview 885.3.1 Physical Network Architecture 885.3.2 CN/RAN Split 905.3.3 QoS Architecture 915.3.4 Spectrum Sharing Architecture Overview 935.3.5 Transport Network 935.3.6 Control and Orchestration 955.4 Novel Concepts and Architectural Extensions 975.4.1 Architecture Modularization for the Core Network 975.4.2 RRC States 995.4.3 Access‐agnostic 5G Core Network 1005.4.4 Roaming Support 1015.4.5 Softwarized Network Control 1025.4.6 Control/User Plane Split 1035.5 Internetworking, Migration and Network Evolution 1045.5.1 Interworking with Earlier 3GPP RATs 1055.5.2 Interworking with Non‐3GPP Access Networks 1075.5.3 Network Evolution 1115.6 Summary and Outlook 112References 1126 RAN Architecture 115Patrick Marsch, Navid Nikaein, Mark Doll, Tao Chen and Emmanouil Pateromichelakis6.1 Introduction 1156.2 Related Work 1166.2.1 3gpp 1166.2.2 5g Ppp 1176.3 RAN Architecture Requirements 1186.4 Protocol Stack Architecture and Network Functions 1196.4.1 Network Functions in a Multi‐AIV and Multi‐Service Context 1196.4.2 Possible Changes in the 5G Protocol Stack Compared to 4G 1216.4.3 Possible Service‐specific Protocol Stack Optimization in 5G 1246.4.4 NF Instantiation for Multi‐Service and Multi‐Tenancy Support 1276.5 Multi‐Connectivity 1296.5.1 5G/(e)LTE Multi‐Connectivity 1296.5.2 5G/5G Multi‐Connectivity 1306.5.3 5G/Wi‐Fi Multi‐Connectivity 1326.6 RAN Function Splits and Resulting Logical Network Entities 1336.6.1 Control Plane/User Plane Split (Vertical Split) 1346.6.2 Split into Centralized and Decentralized Units (Horizontal Split) 1356.6.3 Most Relevant Overall Split Constellations 1386.7 Deployment Scenarios and Related Physical RAN Architectures 1416.7.1 Possible Physical Architectures Supporting the Deployment Scenarios 1426.7.2 5G/(e)LTE and 5G Multi‐AIV Co‐Deployment 1436.8 RAN Programmability and Control 1446.9 Summary and Outlook 147References 1487 Transport Network Architecture 151Anna Tzanakaki, Markos Anastasopoulos, Nathan Gomes, Philippos Assimakopoulos, Josep M. Fàbrega, Michela Svaluto Moreolo, Laia Nadal, Jesús Gutiérrez, Vladica Sark, Eckhard Grass, Daniel Camps‐Mur, Antonio de la Oliva, Nuria Molner, Xavier Costa Perez, Josep Mangues, Ali Yaver, Paris Flegkas, Nikos Makris, Thanasis Korakis and Dimitra Simeonidou7.1 Introduction 1517.2 Architecture Definition 1537.2.1 User Plane 1537.2.2 Control Plane 1557.3 Technology Options and Protocols 1587.3.1 Wireless Technologies 1587.3.2 Optical Transport 1617.3.3 Ethernet 1657.4 Self‐Backhauling 1657.4.1 Comparison with Legacy LTE Relaying 1667.4.2 Technical Aspects of Self‐Backhauling 1677.5 Technology Integration and Interfacing 1687.5.1 Framing, Protocol Adaptation, Flow Identification and Control 1687.5.2 PBB/MPLS Framing to Carry FH/BH and its Multi‐Tenancy Characteristic 1697.6 Transport Network Optimization and Performance Evaluation 1707.6.1 Evaluation of Joint FH and BH Transport 1707.6.2 Experimental Evaluation of Layer‐2 Functional Splits 1737.6.3 Monitoring in the Ethernet Fronthaul 1747.7 Summary 178References 1788 Network Slicing 181Alexandros Kaloxylos, Christian Mannweiler, Gerd Zimmermann, Marco Di Girolamo, Patrick Marsch, Jakob Belschner, Anna Tzanakaki, Riccardo Trivisonno, Ömer Bulakçı, Panagiotis Spapis, Peter Rost, Paul Arnold and Navid Nikaein8.1 Introduction 1818.2 Slice Realization in the Different Network Domains 1838.2.1 Realization of Slicing in the Core Network 1838.2.2 Slice Support on the Transport Network 1868.2.3 Impact of Slicing on the Radio Access Network 1878.2.4 Slice Support Across Different Administrative Domains 1918.2.5 E2E Slicing: A Detailed Example 1938.3 Operational Aspects 1968.3.1 Slice Selection 1968.3.2 Connecting to Multiple Slices 1978.3.3 Slice Isolation 1978.3.4 Radio Resource Management Among Slices 1988.3.5 Managing Network Slices 1998.4 Summary and Outlook 202References 2049 Security 207Carolina Canales‐Valenzuela, Madalina Baltatu, Luciana Costa, Kai Habel, Volker Jungnickel, Geza Koczian, Felix Ngobigha, Michael C. Parker, Muhammad Shuaib Siddiqui, Eleni Trouva and Stuart D. Walker9.1 Introduction 2079.2 Threat Landscape 2089.3 5G Security Requirements 2099.3.1 Adoption of Software‐defined Networking and Virtualization Technologies 2099.3.2 Security Automation and Management 2109.3.3 Slice Isolation and Protection Against Side Channel Attacks in Multi‐Tenant Environments 2119.3.4 Monitoring and Analytics for Security Purposes 2119.4 5G Security Architecture 2119.4.1 Overall Description 2119.4.2 Infrastructure Security 2139.4.3 Physical Layer Security 2169.4.4 5G RAN Security 2179.4.5 Service‐level Security 2219.4.6 A Control and Management Framework for Automated Security 2219.5 Summary 224References 22410 Network Management and Orchestration 227Luis M. Contreras, Víctor López, Ricard Vilalta, Ramon Casellas, Raúl Muñoz, Wei Jiang, Hans Schotten, Jose Alcaraz‐Calero, Qi Wang, Balázs Sonkoly and László Toka10.1 Introduction 22710.2 Network Management and Orchestration Through SDN and NFV 22810.2.1 Software-Defined Networking 22910.2.2 Network Function Virtualization 23210.3 Enablers of Management and Orchestration 23310.3.1 Open and Standardized Interfaces 23410.3.2 Modeling of Services and Devices 23710.4 Orchestration in Multi‐Domain and Multi‐Technology Scenarios 23810.4.1 Multi‐Domain Scenarios 23810.4.2 Multi‐Technology Scenarios 24410.5 Software‐Defined Networking for 5G 24510.5.1 Xhaul Software‐Defined Networking 24510.5.2 Core Transport Networks 25010.6 Network Function Virtualization in 5G Environments 25110.7 Autonomic Network Management in 5G 25210.7.1 Motivation 25210.7.2 Architecture of Autonomic Management 25410.7.3 Autonomic Control Loop 25510.7.4 Enabling Algorithms 25710.8 Summary 258References 259Part 3 5G Functional Design 26311 Antenna, PHY and MAC Design 265Frank Schaich, Catherine Douillard, Charbel Abdel Nour, Malte Schellmann, Tommy Svensson, Hao Lin, Honglei Miao, Hua Wang, Jian Luo, Milos Tesanovic, Nuno Pratas, Sandra Roger and Thorsten Wild11.1 Introduction 26511.2 PHY and MAC Design Criteria and Harmonization 26711.3 Waveform Design 26911.3.1 Advanced Features and Design Aspects of Multi‐Carrier Waveforms 27211.3.2 Comparison of Waveform Candidates for 5G 27611.3.3 Co‐existence Aspects 28011.3.4 General Framework for Multi‐Carrier Waveform Generation 28111.4 Coding Approaches and HARQ 28311.4.1 Coding Requirements 28311.4.2 Coding Candidates 28411.4.3 General Summary and Comparison 28911.4.4 Hybrid Automatic Repeat reQuest (HARQ) 29111.5 Antenna Design, Analog, Digital and Hybrid Beamforming 29311.5.1 Multi‐Antenna Scheme Overview of 3GPP NR 29411.5.2 Hybrid Beamforming 29711.5.3 Digital Beamforming with Finite DACs 29811.5.4 Massive Multiple‐Input Massive Multiple‐Output 29811.6 PHY/MAC Design for Multi‐Service Support 30011.6.1 Fundamental Frame Design Considerations 30011.6.2 Initial Access 30211.6.3 Control Channel Design 30311.6.4 Data Channel Design 30411.7 Summary and Outlook 310References 31112 Traffic Steering and Resource Management 315Ömer Bulakçı, Klaus Pedersen, David Gutierrez Estevez, Athul Prasad, Fernando Sanchez Moya, Jan Christoffersson, Yang Yang, Emmanouil Pateromichelakis, Paul Arnold, Tommy Svensson, Tao Chen, Honglei Miao, Martin Kurras, Samer Bazzi, Stavroula Vassaki, Evangelos Kosmatos, Kwang Taik Kim, Giorgio Calochira, Jakob Belschner, Sergio Barberis and Taylan Şahin12.1 Motivation and Role of Resource Management in 5G 31512.2 Service Classification: A First Step Towards Efficient RM 31712.2.1 QoS Mechanisms in 5G Networks 31712.2.2 A Survey of Traffic Classification Mechanisms 31812.2.3 ML‐based Service Classification Approach 31912.2.4 Numerical Evaluation of Service Classification Schemes 32012.3 Dynamic Multi‐Service Scheduling 32112.3.1 Scheduling Formats and Flexible Timing 32312.3.2 Benefits of Scheduling with Variable TTI Size 32412.3.3 Punctured/Preemptive Scheduling 32612.4 Fast‐Timescale Dynamic Traffic Steering 32812.4.1 Fast Traffic Steering 32812.4.2 Proactive Traffic Steering in Heterogeneous Networks with mmWave Bands 33012.4.3 Multi‐Node Connectivity 33212.5 Network‐based Interference Management 33512.5.1 Interference Mitigation in Dynamic Radio Topology 33612.5.2 Interference Management Based on Advanced Transceiver Designs 34012.5.3 Interference Mitigation in Massive MIMO Dynamic TDD Systems 34212.5.4 Multi‐Cell Pilot Coordination for UL Pilot Interference Mitigation 34512.5.5 Interference Mitigation in mmWave Deployments 34712.6 Multi‐Slice RM 35012.7 Energy‐efficient RAN Moderation 35412.7.1 Coordinated Sleep Cycles for Energy Efficiency 35412.7.2 Cell On/Off Coordination 35612.8 UE Context Management 35912.9 Summary and Outlook 360References 36113 Initial Access, RRC and Mobility 367Mårten Ericson, Panagiotis Spapis, Mikko Säily, Klaus Pedersen, Yinan Qi, Nicolas Barati, Tommy Svensson, Mehrdad Shariat, Marco Giordani, Marco Mezzavilla, Mark Doll, Honglei Miao and Chan Zhou13.1 Introduction 36713.2 Initial Access 36913.2.1 Initial Access in General 36913.2.2 System Information and 5G RAN Lean Design 37013.2.3 Configurable Downlink Synchronization for Unified Beam Operation 37213.2.4 Digital Beamforming in the Initial Access Phase 37413.2.5 Beam Finding for Low-Latency Initial Access 37613.2.6 Optimized RACH Access Schemes 37813.3 States and State Handling 38113.3.1 Fundamentals of the RRC State Machine for 5G 38113.3.2 Mobility Procedures for Connected Inactive 38313.3.3 Configurability of the Connected Inactive State 38513.3.4 Paging in Connected Inactive 38713.3.5 Small Data Transmission in RRC Connected State 39013.4 Mobility 39113.4.1 Introduction 39113.4.2 Mobility Management via UL‐based Measurements 39113.4.3 Cluster-based Beam Mobility Framework 39413.4.4 Partly UE‐autonomous Cell Management for Multi‐Connectivity Cases 39713.4.5 Enhanced Synchronous Handover without Random Access 39813.4.6 RAN Design to Support CSI Acquisition for High‐Mobility Users 40113.5 Summary and Outlook 404References 40414 D2D and V2X Communications 409Shubhranshu Singh, Ji Lianghai, Daniel Calabuig, David Garcia‐Roger, Nurul H. Mahmood, Nuno Pratas, Tomasz Mach and Maria Carmela De Gennaro14.1 Introduction 40914.1.1 Application Scenarios 41014.1.2 Technical Challenges from 5G Design Perspective 41114.2 Technical Status and Standardization Overview 41214.2.1 D2D: 3GPP Standardization Overview 41214.2.2 V2X: 3GPP Standardization Overview 41314.2.3 ETSI ITS Communications Architecture and Protocol Stack 41314.2.4 IEEE Wireless Access in Vehicular Environments – WAVE 41614.2.5 Other Industry Organizations 41714.3 5G Air Interface Candidate Waveforms for Sidelink Support 41814.3.1 Synchronization Problems and Possible Solutions 41814.3.2 Enhancements for V2X 42114.4 Device Discovery on the Sidelink 42414.4.1 Proximity Discovery Architecture 42414.4.2 Network‐supported Proximity Discovery 42414.4.3 Out‐of‐Coverage Proximity Discovery 42514.4.4 Performance Evaluation of Device Discovery with Full‐Duplex Nodes 42614.5 Sidelink Mobility Management 42714.5.1 General Considerations 42714.5.2 D2D Mobility Management Schemes 42914.6 V2X Communications for Road Safety Applications 43014.6.1 General System Design Aspects 43014.6.2 Impact of the Existence of Several Message Ranges on the System Design 43214.6.3 Distributed versus Centralized Radio Resource Management 43414.7 Industrial Implementation of V2X in the Automotive Domain 43414.7.1 Placement of the V2X Platform within the Vehicle 43514.7.2 Test Deployments and Outcomes 43614.8 Further Evolution of D2D Communications 43814.8.1 Exploitation of D2D to Enhance mMTC Services 43814.8.2 Radio Link Enabler in Reuse Mode to Improve System Capacity 44014.8.3 Radio Resource Management for D2D 44114.8.4 Cooperative D2D Communication 44414.9 Summary and Outlook 445References 446Part 4 Performance Evaluation and Implementation 45115 Performance, Energy Efficiency and Techno‐Economic Assessment 453Michał Maternia, Jose F. Monserrat, David Martín‐Sacristán, Yong Wu, Changqing Yang, Mauro Boldi, Yu Bao, Frederic Pujol, Giuseppe Piro, Gennaro Boggia, Alessandro Grassi, Hans‐Otto Scheck, Ioannis‐Prodromos Belikaidis, Andreas Georgakopoulos, Katerina Demesticha and Panagiotis Demestichas15.1 Introduction 45315.2 Performance Evaluation Framework 45415.2.1 IMT‐A Evaluation Framework 45415.2.2 IMT‐2020 Evaluation Process and Framework 45515.2.3 5G PPP Evaluation Framework 45615.3 Network Energy Efficiency 46715.3.1 Why is Network Energy Efficiency Important? 46715.3.2 Energy Efficiency Metrics and Models 46815.3.3 Energy Efficiency Metrics and Product Assessment in the Laboratory 47115.3.4 Numeric Network Energy Efficiency Evaluation 47115.4 Techno‐Economic Evaluation and Analysis of 5G Deployment 47315.4.1 Economic Assessment of New Technology Deployment in Mobile Networks 47415.4.2 Methodology of 5G Deployment Assessment 47515.4.3 Techno‐Economic Evaluation and Deployment Analysis Results 47715.5 Summary 478References 47916 Implementation of Hardware and Software Platforms 483Chia‐Yu Chang, Dario Sabella, David García‐Roger, Dieter Ferling, Fredrik Tillman, Gian Michele Dell’Aera, Leonardo Gomes Baltar, Michael Färber, Miquel Payaró, Navid Nikaein, Pablo Serrano, Raymond Knopp, Sandra Roger, Sylvie Mayrargue and Tapio Rautio16.1 Introduction 48316.2 Solutions for Radio Frontend Implementation 48416.2.1 Requirements on 5G Radio Frontends 48416.2.2 Multi‐Band Transceivers 48516.2.3 Multi‐Antenna Transceivers 48716.2.4 Full‐Duplex Transceivers 49016.2.5 Techniques for the Enhancement of Power Amplifier Efficiency 49116.3 Solutions for Digital HW Implementation 49216.3.1 Requirements on 5G Digital HW 49216.3.2 Complexity Analysis of the Individual Implementation of New Waveforms 49316.3.3 Complexity Analysis of a Multi‐Waveform Harmonized Implementation 49616.3.4 Channel Decoder Implementations for 5G 50116.4 Flexible HW/SW Partitioning Solutions for 5G 50216.4.1 Architecture for Supporting MAC/PHY Cross‐Layer Reconfiguration 50216.4.2 Cognitive Dynamic HW/SW Partitioning Algorithm 50316.5 Implementation of SW Platforms 50416.5.1 Functional Modules 50416.5.2 SW Platform Solutions for Prototyping 5G Systems 50516.6 Implementation Example: vRAN/C‐RAN Architecture in OAI 50616.6.1 Overall Architecture 50716.6.2 Deployment Topology 50716.6.3 Performance Results 50916.6.4 Deployment Environment 51416.7 Summary 516References 51717 Standardization, Trials, and Early Commercialization 521Terje Tjelta, Olav Queseth, Didier Bourse, Yves Bellego, Raffaele de Peppe, Hisham Elshaer, Frederic Pujol, Chris Pearson, Chen Xiaobei, Takehiro Nakamura, Akira Matsunaga, Hitoshi Yoshino, Yukihiko Okumura, Dong Ku Kim, Jinhyo Park and Hong Beom Jeon17.1 Introduction 52117.2 Standardization Roadmap 52217.2.1 3GPP New Radio 52217.2.2 Imt‐ 2020 52417.2.3 3GPP eLTE 52417.3 Early Deployments 52617.3.1 Early Deployment in Europe 52617.3.2 Early Deployment in Americas 53117.3.3 Early Deployment in Asia 53317.4 Summary 547References 547Index 551
Du kanske också är intresserad av
6G to Build a Sustainable Future
Mikko A. Uusitalo, Patrik Rugeland, Mauro Boldi, Ahmad Nimr, Finland) Uusitalo, Mikko A. (Aalto University, Sweden) Rugeland, Patrik (Royal Institute of Technology (KTH), Stockholm, Italy) Boldi, Mauro (Politecnico di Torino, Germany) Nimr, Ahmad (TU Dresden, Mikko A Uusitalo
1 789 kr