Introduction to Reticular Chemistry
Metal-Organic Frameworks and Covalent Organic Frameworks
Inbunden, Engelska, 2019
1 889 kr
Skickas torsdag 25/9
Fri frakt för medlemmar vid köp för minst 249 kr.A concise introduction to the chemistry and design principles behind important metal-organic frameworks and related porous materials Reticular chemistry has been applied to synthesize new classes of porous materials that are successfully used for myraid applications in areas such as gas separation, catalysis, energy, and electronics. Introduction to Reticular Chemistry gives an unique overview of the principles of the chemistry behind metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolitic imidazolate frameworks (ZIFs). Written by one of the pioneers in the field, this book covers all important aspects of reticular chemistry, including design and synthesis, properties and characterization, as well as current and future applications Designed to be an accessible resource, the book is written in an easy-to-understand style. It includes an extensive bibliography, and offers figures and videos of crystal structures that are available as an electronic supplement. Introduction to Reticular Chemistry: -Describes the underlying principles and design elements for the synthesis of important metal-organic frameworks (MOFs) and related materials -Discusses both real-life and future applications in various fields, such as clean energy and water adsorption -Offers all graphic material on a companion website -Provides first-hand knowledge by Omar Yaghi, one of the pioneers in the field, and his team. Aimed at graduate students in chemistry, structural chemists, inorganic chemists, organic chemists, catalytic chemists, and others, Introduction to Reticular Chemistry is a groundbreaking book that explores the chemistry principles and applications of MOFs, COFs, and ZIFs.
Produktinformation
- Utgivningsdatum2019-04-24
- Mått180 x 249 x 38 mm
- Vikt1 179 g
- SpråkEngelska
- Antal sidor552
- FörlagWiley-VCH Verlag GmbH
- EAN9783527345021
Tillhör följande kategorier
Omar M. Yaghi is the James and Neeltje Tretter Chair Professor of Chemistry at University of California, Berkeley, and a Senior Faculty Scientist at Lawrence Berkeley National Laboratory, USA. Markus J. Kalmutzki is a principal scientist at Parr Instrument GmbH in Frankfurt, Germany. Before he was a DFG-postdoctoral fellow in the group of Omar M. Yaghi at the Universtity of California, Berkeley. Christian S. Diercks is currently pursuing his Ph.D. in the group of Omar M. Yaghi at the University of California, Berkeley.
- About the Companion Website xviiForeword xixAcknowledgment xxiIntroduction xxiiiAbbreviations xxviiPart I Metal-Organic Frameworks 11 Emergence of Metal-Organic Frameworks 31.1 Introduction 31.2 Early Examples of Coordination Solids 31.3 Werner Complexes 41.4 Hofmann Clathrates 61.5 Coordination Networks 81.6 Coordination Networks with Charged Linkers 151.7 Introduction of Secondary Building Units and Permanent Porosity 161.8 Extending MOF Chemistry to 3D Structures 171.8.1 Targeted Synthesis of MOF-5 181.8.2 Structure of MOF-5 191.8.3 Stability of Framework Structures 201.8.4 Activation of MOF-5 201.8.5 Permanent Porosity of MOF-5 211.8.6 Architectural Stability of MOF-5 221.9 Summary 23References 242 Determination and Design of Porosity 292.1 Introduction 292.2 Porosity in Crystalline Solids 292.3 Theory of Gas Adsorption 312.3.1 Terms and Definitions 312.3.2 Physisorption and Chemisorption 312.3.3 Gas Adsorption Isotherms 332.3.4 Models Describing Gas Adsorption in Porous Solids 352.3.4.1 Langmuir Model 372.3.4.2 Brunauer–Emmett–Teller (BET) Model 382.3.5 Gravimetric Versus Volumetric Uptake 402.4 Porosity in Metal-Organic Frameworks 402.4.1 Deliberate Design of Pore Metrics 402.4.2 Ultrahigh Surface Area 462.5 Summary 52References 523 Building Units of MOFs 573.1 Introduction 573.2 Organic Linkers 573.2.1 Synthetic Methods for Linker Design 593.2.2 Linker Geometries 623.2.2.1 Two Points of Extension 623.2.2.2 Three Points of Extension 643.2.2.3 Four Points of Extension 643.2.2.4 Five Points of Extension 693.2.2.5 Six Points of Extension 693.2.2.6 Eight Points of Extension 693.3 Secondary Building Units 713.4 Synthetic Routes to Crystalline MOFs 743.4.1 Synthesis of MOFs from Divalent Metals 743.4.2 Synthesis of MOFs from Trivalent Metals 763.4.2.1 Trivalent Group 3 Elements 763.4.2.2 Trivalent Transition Metals 763.4.3 Synthesis of MOFs from Tetravalent Metals 773.5 Activation of MOFs 773.6 Summary 79References 804 Binary Metal-Organic Frameworks 834.1 Introduction 834.2 MOFs Built from 3-, 4-, and 6-Connected SBUs 834.2.1 3-Connected (3-c) SBUs 834.2.2 4-Connected (4-c) SBUs 844.2.3 6-Connected (6-c) SBUs 904.3 MOFs Built from 7-, 8-, 10-, and 12-Connected SBUs 974.3.1 7-Connected (7-c) SBUs 974.3.2 8-Connected (8-c) SBUs 984.3.3 10-Connected (10-c) SBUs 1034.3.4 12-Connected (12-c) SBUs 1054.4 MOFs Built from Infinite Rod SBUs 1124.5 Summary 114References 1145 Complexity and Heterogeneity in MOFs 1215.1 Introduction 1215.2 Complexity in Frameworks 1235.2.1 Mixed-Metal MOFs 1235.2.1.1 Linker De-symmetrization 1235.2.1.2 Linkers with Chemically Distinct Binding Groups 1235.2.2 Mixed-Linker MOFs 1265.2.3 The TBU Approach 1325.2.3.1 Linking TBUs Through Additional SBUs 1335.2.3.2 Linking TBUs Through Organic Linkers 1345.3 Heterogeneity in Frameworks 1355.3.1 Multi-Linker MTV-MOFs 1365.3.2 Multi-Metal MTV-MOFs 1365.3.3 Disordered Vacancies 1395.4 Summary 141References 1416 Functionalization of MOFs 1456.1 Introduction 1456.2 In situ Functionalization 1466.2.1 Trapping of Molecules 1466.2.2 Embedding of Nanoparticles in MOF Matrices 1476.3 Pre-Synthetic Functionalization 1496.4 Post-Synthetic Modification 1496.4.1 Functionalization Involving Weak Interactions 1506.4.1.1 Encapsulation of Guests 1506.4.1.2 Coordinative Functionalization of Open Metal Site 1516.4.1.3 Coordinative Functionalization of the Linker 1516.4.2 PSM Involving Strong Interactions 1536.4.2.1 Coordinative Functionalization of the SBUs by AIM 1546.4.2.2 Post-Synthetic Ligand Exchange 1546.4.2.3 Coordinative Alignment 1566.4.2.4 Post-Synthetic Linker Exchange 1566.4.2.5 Post-Synthetic Linker Installation 1606.4.2.6 Introduction of Ordered Defects 1636.4.2.7 Post-Synthetic Metal Ion Exchange 1646.4.3 PSM Involving Covalent Interactions 1656.4.3.1 Covalent PSM of Amino-Functionalized MOFs 1666.4.3.2 Click Chemistry and Other Cycloadditions 1686.4.4 Covalent PSM on Bridging Hydroxyl Groups 1716.5 Analytical Methods 1716.6 Summary 172References 173Part II Covalent Organic Frameworks 1777 Historical Perspective on the Discovery of Covalent Organic Frameworks 1797.1 Introduction 1797.2 Lewis’ Concepts and the Covalent Bond 1807.3 Development of Synthetic Organic Chemistry 1827.4 Supramolecular Chemistry 1837.5 Dynamic Covalent Chemistry 1877.6 Covalent Organic Frameworks 1897.7 Summary 192References 1938 Linkages in Covalent Organic Frameworks 1978.1 Introduction 1978.2 B–O Bond Forming Reactions 1978.2.1 Mechanism of Boroxine, Boronate Ester, and Spiroborate Formation 1978.2.2 Borosilicate COFs 1988.2.3 Spiroborate COFs 2008.3 Linkages Based on Schiff-Base Reactions 2018.3.1 Imine Linkage 2018.3.1.1 2D Imine COFs 2018.3.1.2 3D Imine COFs 2038.3.1.3 Stabilization of Imine COFs Through Hydrogen Bonding 2058.3.1.4 Resonance Stabilization of Imine COFs 2068.3.2 Hydrazone COFs 2078.3.3 Squaraine COFs 2098.3.4 β-Ketoenamine COFs 2108.3.5 Phenazine COFs 2118.3.6 Benzoxazole COFs 2128.4 Imide Linkage 2138.4.1 2D Imide COFs 2148.4.2 3D Imide COFs 2158.5 Triazine Linkage 2168.6 Borazine Linkage 2178.7 Acrylonitrile Linkage 2188.8 Summary 220References 2219 Reticular Design of Covalent Organic Frameworks 2259.1 Introduction 2259.2 Linkers in COFs 2279.3 2D COFs 2279.3.1 hcb Topology COFs 2299.3.2 sql Topology COFs 2319.3.3 kgm Topology COFs 2339.3.4 Formation of hxl Topology COFs 2359.3.5 kgd Topology COFs 2369.4 3D COFs 2389.4.1 dia Topology COFs 2389.4.2 ctn and bor Topology COFs 2399.4.3 COFs with pts Topology 2409.5 Summary 241References 24210 Functionalization of COFs 24510.1 Introduction 24510.2 In situ Modification 24510.2.1 Embedding Nanoparticles in COFs 24610.3 Pre-Synthetic Modification 24710.3.1 Pre-Synthetic Metalation 24810.3.2 Pre-Synthetic Covalent Functionalization 24910.4 Post-Synthetic Modification 25010.4.1 Post-Synthetic Trapping of Guests 25010.4.1.1 Trapping of Functional Small Molecules 25010.4.1.2 Post-Synthetic Trapping of Biomacromolecules and Drug Molecules 25110.4.1.3 Post-Synthetic Trapping of Metal Nanoparticles 25110.4.1.4 Post-Synthetic Trapping of Fullerenes 25310.4.2 Post-Synthetic Metalation 25310.4.2.1 Post-Synthetic Metalation of the Linkage 25310.4.2.2 Post-Synthetic Metalation of the Linker 25510.4.3 Post-Synthetic Covalent Functionalization 25610.4.3.1 Post-Synthetic Click Reactions 25610.4.3.2 Post-Synthetic Succinic Anhydride Ring Opening 25910.4.3.3 Post-Synthetic Nitro Reduction and Aminolysis 26010.4.3.4 Post-Synthetic Linker Exchange 26110.4.3.5 Post-Synthetic Linkage Conversion 26210.5 Summary 263References 26411 Nanoscopic and Macroscopic Structuring of Covalent Organic Frameworks 26711.1 Introduction 26711.2 Top–Down Approach 26811.2.1 Sonication 26811.2.2 Grinding 26911.2.3 Chemical Exfoliation 26911.3 Bottom–Up Approach 27111.3.1 Mechanism of Crystallization of Boronate Ester COFs 27111.3.1.1 Solution Growth on Substrates 27311.3.1.2 Seeded Growth of Colloidal Nanocrystals 27411.3.1.3 Thin Film Growth in Flow 27611.3.1.4 Thin Film Formation by Vapor-Assisted Conversion 27711.3.2 Mechanism of Imine COF Formation 27711.3.2.1 Nanoparticles of Imine COFs 27811.3.2.2 Thin Films of Imine COFs at the Liquid–Liquid Interface 28011.4 Monolayer Formation of Boroxine and Imine COFs Under Ultrahigh Vacuum 28111.5 Summary 281References 282Part III Applications of Metal-Organic Frameworks 28512 The Applications of Reticular Framework Materials 287References 28813 The Basics of Gas Sorption and Separation in MOFs 29513.1 Gas Adsorption 29513.1.1 Excess and Total Uptake 29513.1.2 Volumetric Versus Gravimetric Uptake 29713.1.3 Working Capacity 29713.1.4 System-Based Capacity 29813.2 Gas Separation 29913.2.1 Thermodynamic Separation 29913.2.1.1 Calculation of Qst Using a Virial-Type Equation 30013.2.1.2 Calculation of Qst Using the Langmuir–Freundlich Equation 30013.2.2 Kinetic Separation 30113.2.2.1 Diffusion Mechanisms 30113.2.2.2 Influence of the Pore Shape 30313.2.2.3 Separation by Size Exclusion 30413.2.2.4 Separation Based on the Gate-Opening Effect 30413.2.3 Selectivity 30513.2.3.1 Calculation of the Selectivity from Single-Component Isotherms 30613.2.3.2 Calculation of the Selectivity by Ideal Adsorbed Solution Theory 30713.2.3.3 Experimental Methods 30813.3 Stability of Porous Frameworks Under Application Conditions 30913.4 Summary 310References 31014 CO2 Capture and Sequestration 31314.1 Introduction 31314.2 In Situ Characterization 31514.2.1 X-ray and Neutron Diffraction 31514.2.1.1 Characterization of Breathing MOFs 31614.2.1.2 Characterization of Interactions with Lewis Bases 31714.2.1.3 Characterization of Interactions with Open Metal Sites 31714.2.2 Infrared Spectroscopy 31814.2.3 Solid-State NMR Spectroscopy 32014.3 MOFs for Post-combustion CO2 Capture 32114.3.1 Influence of Open Metal Sites 32114.3.2 Influence of Heteroatoms 32214.3.2.1 Organic Diamines Appended to Open Metal Sites 32214.3.2.2 Covalently Bound Amines 32314.3.3 Interactions Originating from the SBU 32314.3.4 Influence of Hydrophobicity 32514.4 MOFs for Pre-combustion CO2 Capture 32614.5 Regeneration and CO2 Release 32714.5.1 Temperature Swing Adsorption 32814.5.2 Vacuum and Pressure Swing Adsorption 32814.6 Important MOFs for CO2 Capture 32914.7 Summary 332References 33215 Hydrogen and Methane Storage in MOFs 33915.1 Introduction 33915.2 Hydrogen Storage in MOFs 34015.2.1 Design of MOFs for Hydrogen Storage 34115.2.1.1 Increasing the Accessible Surface Area 34215.2.1.2 Increasing the Isosteric Heat of Adsorption 34415.2.1.3 Use of Lightweight Elements 34815.2.2 Important MOFs for Hydrogen Storage 34915.3 Methane Storage in MOFs 34915.3.1 Optimizing MOFs for Methane Storage 35215.3.1.1 Optimization of the Pore Shape and Metrics 35315.3.1.2 Introduction of Polar Adsorption Sites 35715.3.2 Important MOFs for Methane Storage 35915.4 Summary 359References 35916 Liquid- and Gas-Phase Separation in MOFs 36516.1 Introduction 36516.2 Separation of Hydrocarbons 36616.2.1 C1–C5 Separation 36716.2.2 Separation of Light Olefins and Paraffins 37016.2.2.1 Thermodynamic Separation of Olefin/Paraffin Mixtures 37116.2.2.2 Kinetic Separation of Olefin/Paraffin Mixtures 37216.2.2.3 Separation of Olefin/Paraffin Mixtures Utilizing the Gate-Opening Effect 37516.2.2.4 Separation of Olefin/Paraffin Mixtures by Molecular Sieving 37516.2.3 Separation of Aromatic C8 Isomers 37616.2.4 Mixed-Matrix Membranes 37916.3 Separation in Liquids 38216.3.1 Adsorption of Bioactive Molecules fromWater 38216.3.1.1 Toxicity of MOFs 38216.3.1.2 Selective Adsorption of Drug Molecules fromWater 38316.3.1.3 Selective Adsorption of Biomolecules fromWater 38516.3.2 Adsorptive Purification of Fuels 38516.3.2.1 Aromatic N-Heterocyclic Compounds 38516.3.2.2 Adsorptive Removal of Aromatic N-Heterocycles 38516.4 Summary 386References 38717 Water Sorption Applications of MOFs 39517.1 Introduction 39517.2 Hydrolytic Stability of MOFs 39517.2.1 Experimental Assessment of the Hydrolytic Stability 39617.2.2 Degradation Mechanisms 39617.2.3 Thermodynamic Stability 39817.2.3.1 Strength of the Metal–Linker Bond 39817.2.3.2 Reactivity of Metals TowardWater 39917.2.4 Kinetic Inertness 40017.2.4.1 Steric Shielding 40117.2.4.2 Hydrophobicity 40317.2.4.3 Electronic Configuration of the Metal Center 40317.3 Water Adsorption in MOFs 40417.3.1 Water Adsorption Isotherms 40417.3.2 Mechanisms ofWater Adsorption in MOFs 40517.3.2.1 Chemisorption on Open Metal Sites 40517.3.2.2 Reversible Cluster Formation 40717.3.2.3 Capillary Condensation 40917.4 Tuning the Adsorption Properties of MOFs by Introduction of Functional Groups 41117.5 Adsorption-Driven Heat Pumps 41217.5.1 Working Principles of Adsorption-Driven Heat Pumps 41217.5.2 Thermodynamics of Adsorption-Driven Heat Pumps 41317.6 Water Harvesting from Air 41517.6.1 Physical Background onWater Harvesting 41617.6.2 Down-selection of MOFs forWater Harvesting 41817.7 Design of MOFs with TailoredWater Adsorption Properties 42017.7.1 Influence of the Linker Design 42017.7.2 Influence of the SBU 42017.7.3 Influence of the Pore Size and Dimensionality of the Pore System 42117.7.4 Influence of Defects 42117.8 Summary 422References 423Part IV Special Topics 42918 Topology 43118.1 Introduction 43118.2 Graphs, Symmetry, and Topology 43118.2.1 Graphs and Nets 43118.2.2 Deconstruction of Crystal Structures into Their Underlying Nets 43318.2.3 Embeddings of Net Topologies 43518.2.4 The Influence of Local Symmetry 43518.2.5 Vertex Symbols 43618.2.6 Tilings and Face Symbols 43718.3 Nomenclature 43918.3.1 Augmented Nets 43918.3.2 Binary Nets 44018.3.3 Dual Nets 44118.3.4 Interpenetrated/Catenated Nets 44118.3.5 Cross-Linked Nets 44218.3.6 Weaving and Interlocking Nets 44318.4 The Reticular Chemistry Structure Resource (RCSR) Database 44418.5 Important 3-Periodic Nets 44518.6 Important 2-Periodic Nets 44718.7 Important 0-Periodic Nets/Polyhedra 44918.8 Summary 451References 45119 Metal-Organic Polyhedra and Covalent Organic Polyhedra 45319.1 Introduction 45319.2 General Considerations for the Design of MOPs and COPs 45319.3 MOPs and COPs Based on the Tetrahedron 45419.4 MOPs and COPs Based on the Octahedron 45619.5 MOPs and COPs Based on Cubes and Heterocubes 45719.6 MOPs Based on the Cuboctahedron 45919.7 Summary 461References 46120 Zeolitic Imidazolate Frameworks 46320.1 Introduction 46320.2 Zeolitic Framework Structures 46520.2.1 Zeolite-Like Metal-Organic Frameworks (Z-MOFs) 46520.2.2 Zeolitic Imidazolate Frameworks (ZIFs) 46720.3 Synthesis of ZIFs 46820.4 Prominent ZIF Structures 46920.5 Design of ZIFs 47120.5.1 The Steric Index 𝛿 as a Design Tool 47220.5.1.1 Principle I: Control over the Maximum Pore Opening 47320.5.1.2 Principle II: Control over the Maximum Cage Size 47320.5.1.3 Principle III: Control over the Structural Tunability 47420.5.2 Functionalization of ZIFs 47520.6 Summary 476References 47721 Dynamic Frameworks 48121.1 Introduction 48121.2 Flexibility in Synchronized Dynamics 48221.2.1 Synchronized Global Dynamics 48221.2.1.1 Breathing in MOFs Built from Rod SBUs 48321.2.1.2 Breathing in MOFs Built from Discrete SBUs 48421.2.1.3 Flexibility Through Distorted Organic Linkers 48721.2.2 Synchronized Local Dynamics 48721.3 Independent Dynamics in Frameworks 49021.3.1 Independent Local Dynamics 49021.3.2 Independent Global Dynamics 49221.4 Summary 494References 494Index 497