Beyond the Standard Model of Elementary Particle Physics
Inbunden, Engelska, 2014
1 889 kr
Tillfälligt slut
A unique and comprehensive presentation on modern particle physics which stores the background knowledge on the big open questions beyond the standard model, as the existence of the Higgs-boson, or the nature of Dark Matter and Dark Energy.
Produktinformation
- Utgivningsdatum2014-04-16
- Mått178 x 249 x 36 mm
- Vikt1 524 g
- SpråkEngelska
- Antal sidor656
- FörlagWiley-VCH Verlag GmbH
- EAN9783527411771
Tillhör följande kategorier
Yorikiyo Nagashima is Professor Emeritus at the Department of Physics of Osaka University, Japan. An organizer of international conferences, he is also a member of the most important collaboration groups in his field of expertise, including those related to neutrino research. Professor Nagashima was the spokesman of the VENUS group, one of the major detectors of the Japanese first collider accelerator TORISTAN, where he served the first and second term at the start of the project. Professor Nagashima has authored or co-authored almost 300 papers, some of them cited up to 250 times.
- Preface xiiiAcknowledgments xviiGlossary xix1 Higgs 11.1 Introduction 11.2 Higgs Interactions 21.2.1 Standard Model 21.2.2 Lagrangian After Symmetry Breaking 51.2.3 Decay Modes 61.3 Mass 91.3.1 Predictions from EW Data 91.3.2 Vacuum stability 101.3.3 Theoretical Upper Limit 121.4 Little and Big Hierarchy Problem 161.5 Higgs in the Supersymmetry 191.5.1 Two Higgs Doublets 191.5.2 Coupling Strengths of MSSM Higgs 221.5.3 Mass Spectrum of MSSM Higgs 241.6 Is the Higgs Elementary? 281.6.1 Technicolor Model 291.6.2 Little Higgs Model 311.7 Production and Detection of Higgs 381.7.1 Higgsstrahlung e−e+ → hZ 391.7.2 W Boson Fusion 391.7.3 Productions at the Hadron Collider 431.7.4 Signals at LHC 461.7.5 Higgs Detection Methods 481.7.6 Discovery of Higgs 511.7.7 SM Higgs? 521.7.8 MSSM Higgs and Future Prospect 551.8 Summary 582 Neutrino 612.1 Introduction 612.2 Neutrino Mass 622.2.1 Mass Matrix 652.2.2 Left-Right Symmetric Model 692.3 Electromagnetic Interaction 702.4 Neutrino Mixing 732.5 Neutrino Oscillation 762.5.1 Two-Flavor Oscillation 762.5.2 Atmospheric Neutrino 792.5.3 Accelerator Experiments 822.6 Underground Detectors 872.7 Solar Neutrino 932.7.1 The Solar Puzzle 932.7.2 Matter Oscillation 1002.7.3 Reactor Experiment 1112.8 Three-Flavor Oscillation 1142.8.1 PMNS Matrix 1142.8.2 Summary of Experimental Data 1202.8.3 CP Violation and Mass Hierarchy 1212.8.4 Future Prospects 1242.9 Double Beta Decay 1262.9.1 The Effective Majorana Mass 1282.9.2 Current Status 1292.9.3 To Design an Experiment 1312.9.4 Experimental Apparatus 1332.10 Supernova Neutrino 1362.10.1 Stellar Evolution 1382.10.2 Feedback to Particle Physics 1503 Grand Unified Theories 1553.1 Introduction 1553.2 Why GUTs? 1553.2.1 Weinberg Angle in GUTs 1573.2.2 Quantization of the Electric Charge 1573.2.3 Triangle Anomaly 1583.3 SU(5) 1603.3.1 Fermion Representation 1613.3.2 Representation of the Gauge Particle 1643.3.3 Symmetry Breakdown 1683.3.4 Predictions 1703.4 SO(10) 1743.4.1 Left–Right Symmetric World 1743.4.2 New Gauge Bosons Z′ and W′ 1753.5 Hierarchy Problem 1823.6 Susy Gut 1854 Supersymmetry I: Basics 1894.1 Introduction 1894.1.1 Toy Model 1904.1.2 Field Theoretical Operators 1914.2 Two-Component Formalism 1934.2.1 Majorana Fields 1934.2.2 SUSY Operators 1984.2.3 Superspace 2004.3 Chiral Superfield 2034.3.1 Products of Chiral Superfields 2064.4 Vector Superfields 2064.4.1 Field Strength 2094.5 Action 2104.5.1 SUSY Invariant Action 2104.5.2 Kinetic Energy of Chiral Superfield 2124.5.3 Superpotential 2134.5.4 Lagrangian of the Chiral Fields 2154.5.5 Kinetic Energy of Vector Field 2164.6 Gauge Interaction 2174.6.1 Global U(1) Transformation 2174.6.2 Local U(1) Transformation 2174.6.3 Non-Abelian Interaction 2194.7 Summary of SUSY Lagrangian 2204.8 Spontaneous Symmetry Breaking 2214.8.1 D-Term Breaking 2224.8.2 F-Term Breaking 2235 Supersymmetry II: Phenomenology 2255.1 Introduction 2255.2 Minimum Supersymmetric Standard Model 2265.2.1 Particle Spectrum 2265.2.2 Interactions 2295.2.3 Constraints 2305.2.4 SUSY Breaking 2315.2.5 Higgs Potential 2325.3 Minimum SUGRA 2355.3.1 Soft- SUSY Breaking 2355.3.2 Mass Formula 2375.3.3 μ Problem 2415.4 GMSB 2415.4.1 Messenger Particles 2425.4.2 Mass Formula 2425.4.3 Features of GMSB 2445.5 AMSB and Extra Dimension 2455.6 Summary of Mass Spectra 2475.7 Searches for Sparticles 2485.7.1 Production Mechanism 2495.7.2 Sleptons 2505.7.3 Charginos and Neutralinos 2535.7.4 LSP 2555.7.5 Gluino and Squarks 2555.7.6 Stop 2605.7.7 R-hadrons 2615.7.8 Gravitino 2625.8 Current Status 2636 Extra Dimension 2676.1 Introduction 2676.2 KK Tower 2706.2.1 Effective Coupling Strength in 4D 2726.3 Chiral Fermions 2736.3.1 Orbifold S1∕Z2 2756.3.2 Mass Generation and Localization 2786.3.3 Hierarchy 2826.3.4 Split Fermion Scenario 2856.4 Gauge Field in ED 2876.4.1 Action in 4D 2876.4.2 Coupling Strength 2886.4.3 Gauge–Higgs Unification 2896.5 Gravitational Field 2926.5.1 Decomposition of the Gravitational Fields 2946.6 Warped Extra Dimension 2966.6.1 Anti-de Sitter Space AdS5 2966.6.2 RS1 Scenario 2996.6.3 RS2 scenario 3006.6.4 Gravitons in the RS Model 3026.6.5 Signals for Warped ED 3056.7 Universal Extra Dimension (UED) 3086.7.1 General Features 3086.7.2 Selection Rules 3086.7.3 Constraints 3116.7.4 Signals for UED 3126.8 Searches for Generic ED 3136.8.1 Astrophysical Constraints on ADD Models 3146.8.2 Collider Experiments on ADD Models 3166.8.3 TeV−1 Extra Dimension Model: 3226.9 Black hole production 3257 Axion 3297.1 Soliton 3297.1.1 Kink 3297.1.2 Vortex 3347.1.3 Winding Number 3377.1.4 Spacetime Where the Soliton Lives 3397.1.5 Instanton 3407.1.6 θ Vacuum 3477.1.7 Electroweak Vacua 3487.2 Strong CP Problem 3507.2.1 Anomaly 3507.2.2 Chiral Transformation and the Mass Term 3537.2.3 U(1) problem 3557.3 Why Do We Need the Axion? 3567.3.1 PQ Symmetry and the Standard Axion 3577.3.2 Invisible Axion 3607.4 Constraints on Invisible Axions 3637.4.1 Coolant of the Stellar Evolution 3637.4.2 Axion as the Dark Matter 3677.4.3 Misalignment axion 3677.5 Laboratory Axion Searches 3708 Cosmology I: Big Bang Universe 3778.1 Why Do We Study Cosmology? 3778.2 Cosmic Equation 3788.2.1 Robertson–Walker Metric 3798.2.2 Friedmann Equation 3828.3 Expanding Universe 3858.3.1 Redshift of Light 3858.3.2 Redshift of Particles 3868.3.3 Cosmic Parameters 3868.4 Thermal Universe 3898.4.1 Thermodynamics 3898.4.2 Radiation and Matter Dominance 3928.4.3 Time versus Temperature 3938.4.4 Overview of Thermal History 3948.5 Cosmic Distance, Horizon 3968.5.1 Distance 3968.5.2 Horizon 3998.6 Genesis 4008.6.1 Matter Universe 4008.6.2 Baryogenesis 4018.6.3 Leptogenesis 4048.6.4 Neutrino Decoupling 4088.6.5 Big Bang Nucleosynthesis 4108.7 Last Scattering 4148.7.1 Radiation–Matter Equality 4148.7.2 Recombination 4158.7.3 Dark Age 4178.8 Inflation 4188.8.1 Slow Rolling and Reheating 4188.8.2 Horizon Problem 4218.8.3 Flatness Problem 4238.8.4 Monopole Problem 4249 Cosmology II: Structure Formation 4259.1 Galaxy Distribution 4259.1.1 Introduction 4259.1.2 Boltzmann Equation 4299.1.3 Growth of the Fluctuation 4349.1.4 Dark Matter 4359.1.5 Jeans Wavelength of the Neutrino 4369.1.6 Power Spectrum 4379.1.7 Initial fluctuation 4449.1.8 Effects of Neutrino Mass 4489.1.9 Primordial Fluctuation 4489.2 CMB Anisotropy 4549.2.1 Overview 4549.2.2 Sachs–Wolfe Effect 4589.2.3 Acoustic Oscillations 4599.2.4 Doppler Effect 4629.2.5 Silk Damping 4629.2.6 Outcome of CMB Measurements 4649.2.7 Polarization 46710 Dark Matter 47510.1 Cosmic Budget 47510.2 Evidences of Dark Matter 47510.2.1 Rotation Curves of Spiral Galaxies 47610.2.2 Virial Mass of the Clusters 47710.2.3 X-ray Emitting Clusters 47810.2.4 Gravitational Lens 47910.3 Relics of the Big Bang 48910.3.1 Freeze-Out 48910.3.2 Hot Dark Matter 49010.3.3 Cold Dark Matter 49110.3.4 Candidates for the Dark Matter 49310.4 How to Detect? 49510.4.1 Indirect methods 49510.4.2 Production by Accelerators 49710.4.3 WIMPS Wind 49810.5 Searches for DMs in the Halo 50510.5.1 General 50510.5.2 Bolometer 50710.5.3 Xe Detector 50810.5.4 Current Status 51211 Dark Energy 51311.1 Dark Energy 51311.1.1 Accelerating Universe 51311.1.2 Cosmic Age 51511.1.3 ΛCDM Model 51911.2 Cosmological Constant 52011.3 Quintessence model 52311.4 Other Dark Energy Models 53211.5 How to Investigate the Dark Energy? 533Appendix A Virial Theorem 543Appendix B Chandrasekhar Mass 545Appendix C Production of KK Gravitons 549Appendix D Homotopy 551Appendix E General Relativity 559E.1 Geodesic Equation 559E.2 Ricci Tensor and Scalar 561E.3 Gauge Degrees of Freedom 561E.4 Gravitational Waves 563Appendix F Tensor Spherical Harmonic Function 565Appendix G Destiny of the Cosmos 567Appendix H Answers to Some Problems 571References 575Color Plates 597Index 617