bokomslag Cauchy Problem for Differential Operators with Double Characteristics
Vetenskap & teknik

Cauchy Problem for Differential Operators with Double Characteristics

Tatsuo Nishitani

Pocket

729:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Denna produkt går inte att reservera, köp den gärna online!

  • 213 sidor
  • 2017
Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for di?erential operators with non-e?ectively hyperbolic double characteristics. Previously scattered over numerous di?erent publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem. A doubly characteristic point of a di?erential operator P of order m (i.e. one where Pm = dPm = 0) is e?ectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is e?ectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms. If there is a non-e?ectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between -Pµj and Pµj, where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 4 Jordan block, the spectral structure of FPm is insu?cient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
  • Författare: Tatsuo Nishitani
  • Format: Pocket/Paperback
  • ISBN: 9783319676111
  • Språk: Engelska
  • Antal sidor: 213
  • Utgivningsdatum: 2017-11-26
  • Förlag: Springer International Publishing AG