bokomslag Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers
Vetenskap & teknik

Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers

Cédric Arhancet Christoph Kriegler

Pocket

829:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Denna produkt går inte att reservera, köp den gärna online!

  • 280 sidor
  • 2022
This book on recent research in noncommutative harmonic analysis treats the Lpboundedness of Riesz transforms associated with Markovian semigroups of either Fouriermultipliers on non-abelian groups or Schur multipliers. The detailed study of theseobjects is then continued with a proof of the boundedness of the holomorphic functional calculus for Hodge-Dirac operators, thereby answering a question of Junge, Mei and Parcet, and presenting a new functional analytic approach which makes it possible to further explore the connection with noncommutative geometry. These Lpoperations are then shown to yield new examples of quantum compact metric spacesand spectral triples.The theory described in this book has at its foundation one of the great discoveries in analysis of the twentieth century: the continuity of the Hilbert and Riesz transforms on Lp. In the works ofLust-Piquard (1998) and Junge, Mei and Parcet (2018), it became apparent that these Lpoperations can beformulated on Lpspaces associated with groups. Continuing these lines of research, the book provides a self-contained introduction to the requisite noncommutative background. Covering an active and exciting topic which has numerous connections with recent developments in noncommutative harmonic analysis, the book will be of interest both to experts in no-commutative Lpspaces and analysts interested in the construction of Riesz transforms and Hodge-Diracoperators.
  • Författare: Cédric Arhancet, Christoph Kriegler
  • Format: Pocket/Paperback
  • ISBN: 9783030990107
  • Språk: Engelska
  • Antal sidor: 280
  • Utgivningsdatum: 2022-05-06
  • Förlag: Springer Nature Switzerland AG