bokomslag Property ($T$) for Groups Graded by Root Systems
Vetenskap & teknik

Property ($T$) for Groups Graded by Root Systems

Mikhail Ershov Andrei Jaikin-Zapirain Martin Kassabov

Pocket

1209:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 2017
The authors introduce and study the class of groups graded by root systems. They prove that if $\Phi$ is an irreducible classical root system of rank $\geq 2$ and $G$ is a group graded by $\Phi$, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of $G$. As the main application of this theorem the authors prove that for any reduced irreducible classical root system $\Phi$ of rank $\geq 2$ and a finitely generated commutative ring $R$ with $1$, the Steinberg group ${\mathrm St}_{\Phi}(R)$ and the elementary Chevalley group $\mathbb E_{\Phi}(R)$ have property $(T)$. They also show that there exists a group with property $(T)$ which maps onto all finite simple groups of Lie type and rank $\geq 2$, thereby providing a ``unified'' proof of expansion in these groups.
  • Författare: Mikhail Ershov, Andrei Jaikin-Zapirain, Martin Kassabov
  • Format: Pocket/Paperback
  • ISBN: 9781470426040
  • Språk: Engelska
  • Utgivningsdatum: 2017-09-01
  • Förlag: American Mathematical Society