bokomslag Painlevé III: A Case Study in the Geometry of Meromorphic Connections
Vetenskap & teknik

Painlevé III: A Case Study in the Geometry of Meromorphic Connections

Martin Guest Claus Hertling

Pocket

549:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 204 sidor
  • 2017
The purpose of this monograph is two-fold: it introduces a conceptual language for the geometrical objects underlying Painlevé equations, and it offers new results on a particular Painlevé III equation of typePIII (D6), calledPIII (0, 0, 4, -4), describing its relation to isomonodromic families of vector bundles onP1with meromorphic connections. This equation is equivalent to the radial sine (or sinh) Gordon equation and, as such, it appears widely in geometry and physics. It is used here as a very concrete and classical illustration of the modern theory of vector bundles with meromorphic connections. Complex multi-valued solutions on C* are the natural context for most of the monograph, but in the last four chapters real solutions on R>0 (with or without singularities) are addressed. These provide examples of variations of TERP structures, which are related tott?geometry and harmonic bundles. As an application, a new global picture o0 is given.
  • Författare: Martin Guest, Claus Hertling
  • Format: Pocket/Paperback
  • ISBN: 9783319665252
  • Språk: Engelska
  • Antal sidor: 204
  • Utgivningsdatum: 2017-10-15
  • Förlag: Springer International Publishing AG