Kommande
bokomslag Essential GraphRAG
Data & IT

Essential GraphRAG

Bratanic Tomaz Tomaz Bratanic Oscar Hane

Pocket

479:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

  • 175 sidor
  • 2025

Upgrade your RAG applications with the power of knowledge graphs.

Retrieval Augmented Generation (RAG) is a great way to harness the power of generative AI for information not contained in a LLM's training data and to avoid depending on LLM for factual information. However, RAG only works when you can quickly identify and supply the most relevant context to your LLM.Essential GraphRAGshows you how to use knowledge graphs to model your RAG data and deliver better performance, accuracy, traceability, and completeness.

InsideEssential GraphRAGyou'll learn:

  • The benefits of using Knowledge Graphs in a RAG system
  • How to implement a GraphRAG system from scratch
  • The process of building a fully working production RAG system
  • Constructing knowledge graphs using LLMs
  • Evaluating performance of a RAG pipeline

Essential GraphRAGis a practical guide to empowering LLMs with RAG. You'll learn to deliver vector similarity-based approaches to find relevant information, as well as work with semantic layers, and generate Cypher statements to retrieve data from a knowledge graph.

  • Författare: Bratanic Tomaz, Tomaz Bratanic, Oscar Hane
  • Format: Pocket/Paperback
  • ISBN: 9781633436268
  • Språk: Engelska
  • Antal sidor: 175
  • Utgivningsdatum: 2025-12-03
  • Förlag: Pearson Education