Hoppa till sidans huvudinnehåll

Embeddings and Extensions in Analysis

Häftad, Engelska, 2011

Av J.H. Wells, L.R. Williams, J. H. Wells, L. R. Williams

709 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

The object of this book is a presentation of the major results relating to two geometrically inspired problems in analysis. One is that of determining which metric spaces can be isometrically embedded in a Hilbert space or, more generally, P in an L space; the other asks for conditions on a pair of metric spaces which will ensure that every contraction or every Lipschitz-Holder map from a subset of X into Y is extendable to a map of the same type from X into Y. The initial work on isometric embedding was begun by K. Menger [1928] with his metric investigations of Euclidean geometries and continued, in its analytical formulation, by I. J. Schoenberg [1935] in a series of papers of classical elegance. The problem of extending Lipschitz-Holder and contraction maps was first treated by E. J. McShane and M. D. Kirszbraun [1934]. Following a period of relative inactivity, attention was again drawn to these two problems by G. Minty's work on non-linear monotone operators in Hilbert space [1962]; by S. Schonbeck's fundamental work in characterizing those pairs (X,Y) of Banach spaces for which extension of contractions is always possible [1966]; and by the generalization of many of Schoenberg's embedding theorems to the P setting of L spaces by Bretagnolle, Dachuna Castelle and Krivine [1966].

Produktinformation

  • Utgivningsdatum2011-11-11
  • Mått170 x 244 x 8 mm
  • Vikt229 g
  • FormatHäftad
  • SpråkEngelska
  • SerieErgebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge
  • Antal sidor110
  • FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • ISBN9783642660399

Tillhör följande kategorier