Constructive Methods of Wiener-Hopf Factorization

Häftad, Engelska, 2012

Av Gohberg, Kaashoek

709 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r •. . . • rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . • [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r· J J J J J where Aj is a square matrix of size nj x n• say. B and C are j j j matrices of sizes n. x m and m x n . • respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity.

Produktinformation

  • Utgivningsdatum2012-04-19
  • Mått170 x 244 x 23 mm
  • Vikt728 g
  • FormatHäftad
  • SpråkEngelska
  • SerieOperator Theory: Advances and Applications
  • Antal sidor410
  • FörlagSpringer Basel
  • ISBN9783034874205